genetic testing are listed in Table 2. Thirty-one patients reported DTC genetic testing, of which 14/31 (46.7%) reported their DTC genetic test screened for HH. Six of those patients were prompted to see a specialist in HH. Of the 3 patients who reported their specific alleles for HH from DTC genetic testing, one had discordant results by formal geno typing. Patients who obtained DTC genetic testing were more likely to be females and have lower BMI. After adjusting for age, race, BMI, employment, education and income status, female sex was the only predictor associated with obtaining DTC genetic testing with an adjusted odds ratio (AOR) of 3.6 (95% CI; 1.04-12.3, P = 0.044).

CONCLUSIONS: Among patients presenting for HH, approximately one third had undergone prior DTC genetic testing. Among those patients, 19% presented to a physician specifically for concerns of HH after undergoing DTC genetic testing. Females are more likely to obtain DTC genetic testing, although HH is a male predominant disorder. Providers should be aware of the growing popularity of DTC genetic testing, and its limitations.

S5154 Category Award (Liver) Presidential Poster Award

Clinical Outcomes in Patients With Acute Hepatic Porphyria Treated With Givosiran Who Stopped Hemin Prophylaxis at Study Entry: A Post Hoc Analysis of Data From the Phase 3 ENVISION Study Through Month 12

Herbert L. Bonkovsky, MD,1,2,3 Manisha Balwani, MD, MS,4 Elaine Sardh, MD, PhD,5 Laurent Goyen, MD, PhD,6 David C. Rees, MD, MA,7 Penelope Stein, MD, PhD,8 Ulrich Stolzl, MD,9 Paola Aguilar Pérez, MD,7,10 D. Montgomery Biodal, MD,11 Stobin Kec, MD,12 Charles Parker, MD,13 Samuel flavie, MD, PhD,14 Jerzy Windigska, MD,15 Deba D’Avole, MD, PhD,16 Gayle Ross, MD,17 Peter Stewart, MD,18 Bruce Ritchie, MD,19 Jescyoun Oh, MD, PhD,20 Pauline Harper, MD, PhD,21 Juan-Der Wang, MD,22,23 Janneke Lancaster, MD, PhD,21,24 Aneta Ivanova, MD, PhD,21,25 Yutaka Hori, MD,26 Karl E. Anderson, MD,27 Elisabeth Minder, MD,28 Daphne Vainul, MD,29 Rikku Kajino, MD,30 Monica Freitas, MD, PhD,31 David Coman, MBBS,32,33 Yoshie Goto, MD,34 Hong-Chou Kuo, MD,35 Zoe Hua, PhD,36 Amy Simon, MD, BA,37 John J. Ko, PhD, MD,38 Paolo Ventura, MD,39 Wake Forest University, NC, Baptist Medical Center, Winston-Salem, NC; 4Jain School of Medicine and Biotechnology, New York, NY; 5Porphyria Centre Sweden, Centre for Inherited Metabolic Diseases, Karolinska Institutet, Stockholm, Stockholm Lan, Sweden; 6Centre Français des Porphyries, Paris, Ile-de-France, France; 7King’s College Hospital, London, England, United Kingdom; 8Klinikum Chemnitz, Chemnitz, Saxen, Germany; 9Hospital Clinic Barcelone, Barcelona, Catalomia, Spain; 10University of California, San Francisco, CA; 11University of Washington, Seattle, WA; 12University of Utah, Salt Lake City, UT; 13University of Michigan, Ann Arbor, MI; 14Krankenhaus Chemnitz, Sachsen, Germany; 15University of Texas Medical Branch, Galveston, TX; 16University of Texas Medical Branch, Galveston, TX; 17University of Texas Medical Branch, Galveston, TX; 18University of Texas Medical Branch, Galveston, TX; 19University of Texas Medical Branch, Galveston, TX; 20University of Texas Medical Branch, Galveston, TX; 21Jinling Hospital, Nanjing, Jiangsu, China; 22Insitutul de Patologia, Porto, Portugal; 23University of Houston, Houston, Texas; 24University of Houston, Houston, Texas; 25University of Houston, Houston, Texas; 26University of Houston, Houston, Texas; 27University of Houston, Houston, Texas; 28University of Houston, Houston, Texas; 29University of Houston, Houston, Texas; 30University of Houston, Houston, Texas; 31University of Houston, Houston, Texas; 32University of Houston, Houston, Texas; 33University of Houston, Houston, Texas; 34University of Houston, Houston, Texas; 35University of Houston, Houston, Texas; 36University of Houston, Houston, Texas; 37University of Houston, Houston, Texas; 38University of Houston, Houston, Texas; 39University of Houston, Houston, Texas.

INTRODUCTION: Administration of antibiotics in patients with cirrhosis and upper gastrointestinal (GI) bleeding has been shown to improve outcomes. Seven days of antibiotics are generally recommended but duration has not been compared to clinical outcomes in available literature. The goal of our study was to study the effect of antibiotic duration on patient outcomes.

METHODS: We conducted a retrospective analysis of 243 patients with cirrhosis presenting with upper GI bleeding at our institute from 2010 to 2018. Patients were divided into three cohorts based on duration of antibiotic administration for prophylaxis: 1–3 days of antibiotics, 4–6 days of antibiotics and 7 or more days of antibiotics. Rates of infection within 30 days, time to infection, rebleeding, and mortality were compared between the three groups with Chi square, Fisher Exact and Kruskall-Wallis tests.

RESULTS: Medical charts of 943 patients with cirrhosis and upper GI bleed during the study period were reviewed. 303 patients with upper gastrointestinal bleeding did not have concomitant confirmed or suspected infection on presentation, of these 243 patients received antibiotics for prophylaxis and were included for analysis. Seventy-seven patients received antibiotic therapy for 3 days or less, 69 patients for 4 to 6 days, and 97 patients longer than 6 days. The three groups were well matched in demographic and clinical variables. 27 patients developed infections within 30 days of bleed. Rates of infection were not statistically different between the three antibiotic groups (P = 0.79). In 30 days following the GI bleed, pneumonia was the most diagnosed infection (11 patients) followed by urinary tract infections (eight patients). Four patients developed spontaneous bacterial peritonitis and three were diagnosed with bacteremia. There was no difference in time to infection (Kruskall Wallace test P = 0.75), early re-bleeding (P = 0.38), late re-bleeding (P = 0.37) and in hospital mortality (P = 0.94) in the three groups. Six patients in the cohort developed C. difficile infection; no patient in the short antibiotic group developed C. difficile infection.

CONCLUSION: Short course of antibiotics for prophylaxis (3 days) appears safe and adequate for prophylaxis in cirrhosis with upper gastrointestinal bleeding if bleeding has abated and there is no active infection.

S5156

PCOS is an Independent Predictor of Elevated ALT in Adolescent Girls With Obesity

Sarah E. Michael, MD,1 Jeanne A. Darbinian, MPH,2 Nirmala D. Ramallapill, MPH1, Stephanie J. Wie, MD,3 Jinly H. Koh, MD,4 Joan C. Lo, MD,5 Louise C. Greenspan, MD,5 Raja Samir Khan, MD1, Syeda Fatima Naqvi, MD1, Rida Ul Jamalt, MBBS1, Stephanie J. Wu, MD1, Jaclyn Khil, MD1, Joan C. Lo, MD2, Louise C. Greenspan, MD3,1.

INTRODUCTION: Polycystic ovary syndrome (PCOS) is a common endocrine disorder affecting reproductive-age women and is associated with obesity. Previous studies have reported an association of PCOS with non-alcoholic fatty liver disease (NAFLD), as well as increased alanine aminotransferase (ALT), a marker of NAFLD. Few studies have explored this association in adolescents. In this study, we examined diagnosed PCOS in adolescent girls with obesity and the relationship between PCOS, obesity severity, and elevated ALT levels.

METHODS: In a Northern California integrated healthcare delivery system, we conducted a retrospective study of 4,046 adolescent females 12-17 years of obesity (BMI ≥95th percentile) at a well-child visit between 2012-2014 who had metabolic labs, including serum ALT measured within 1 year of the visit. We classified girls by moderate and severe obesity (BMI 100-119% and ≥120% of the 95th percentile). Diagnosis of PCOS (ICD-9 25.04) was based on an outpatient